
Climate Change Impacts on Urban Sanitation: A Systematic Review
and Failure Mode Analysis
Leonie Hyde-Smith, Zhe Zhan, Katy Roelich, Anna Mdee, and Barbara Evans*

Cite This: Environ. Sci. Technol. 2022, 56, 5306−5321 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Climate change will stress urban sanitation systems.
Although urban sanitation uses various infrastructure types and
service systems, current research appears skewed toward a small
subset of cases. We conducted a systematic literature review to
critically appraise the evidence for climate change impacts on all
urban sanitation system types. We included road-based transport
networks, an essential part of fecal sludge management systems.
We combined the evidence on climate change impacts with the
existing knowledge about modes of urban sanitation failures. We
found a predominance of studies that assess climate impacts on
centralized sewerage in high-income contexts. The implications of
climate change for urban nonsewered and complex, fragmented,
and (partially) decentralized sanitation systems remain under-
researched. In addition, the understanding of the impacts of climate change on urban sanitation systems fails to take a
comprehensive citywide perspective considering interdependencies with other sectors and combinations of climate effects. We
conclude that the evidence for climate change impacts on urban sanitation systems is weak. To date, research neither adequately
represents the variety of urban sanitation infrastructure and service systems nor reflects the operational and management challenges
of already stressed systems.
KEYWORDS: extreme weather, sewer, CSO, combined sewer overflow, emptying, FSM, flood

■ INTRODUCTION

Effective sanitation systems are crucial for public and
environmental health, particularly in densely populated urban
areas where the risks from unsafe excreta disposal are
compounded because of excreta volumes and the probability
of exposure.1 Globally, around 1.9 billion people lack access to
basic sanitation; more than a third of urban dwellers lack
access to safely managed sanitation systems.2 The effects of
climate change (CC) can damage or destroy sanitation
infrastructure, disrupt services, and inhibit the system’s
efficacy;3−5 CC will make achieving universal access to safely
managed sanitation more expensive and slower.6

There have been a small number of reviews on the impacts
of CC on urban sanitation. Primarily these have focused on
changing precipitation patterns and consequent flood risks for
cities relying on sewer-based urban waste- and stormwater
management7−9 or included a broader overview on potential
CC effects and impacts but also focused on sewerage.5

The first comprehensive attempts to identify potential
impacts of CC on various sanitation systems and consider
their vulnerability and resilience in low and lower-middle
income countries (LMICs), were the Vision 2030 research
commissioned by WHO10−13 and a scoping study led by the
Overseas Development Institute on climate impacts on water

resources and WASH systems.14 Since then, scholars have
examined the resilience and adaptability of different sanitation
technologies15−17 and applied the Vision 2030 sanitation
resilience categories to specific countries.18 Recent summaries
have incorporated the mentioned studies19−21 and provided
valuable systems analysis on the impacts of flooding.22 Several
international agencies have published guidelines and summary
papers.23−25

However, there has not been a comprehensive summary and
assessment of the evidence base for the likely impacts of CC on
the range of urban sanitation systems or components of such
systems generally found in low- and middle-income countries
and high-income countries (HIC) contexts, integrating the
evidence for impacts on sewered and nonsewered sanitation
and highlighting the gaps in knowledge and rigor of assessment
of CC impacts along the entire sanitation chain.
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This study responds to this gap by delivering a systematic
review that overlays knowledge about the failures of urban
sanitation systems today with the stresses that a future climate
will impose. We based our analysis on a recent review of urban
sanitation in 39 cities, which articulates typical urban sanitation
systems and corresponding failure modes based on the analysis
of excreta flow diagrams.26 We used these failure modes to
explore how CC may increase pressure on existing diverse
sanitation systems, including household and city-scale infra-
structure and services, which are often incomplete or poorly
functioning.26,27

Terminology and Framing. Locally the effects of global
CC will be (or are already) felt as more intense or prolonged
precipitation, more frequent or more intense storms or
cyclones, more variable or declining rainfall or runoff, sea-
level rise, or more variable and increasing temperatures,
including temperature extremes. These CC effects can cause or
exacerbate hazards or changes such as flooding, erosion, or
changes in ground and surface water levels that directly impact
sanitation systems.25 We categorize the potential impacts of
CC on urban sanitation systems as follows:

• Negative direct impacts: (i) damaged sanitation infra-
structure, (ii) disrupted services, and (iii) inhibited
system efficacy.

• Positive direct impacts: (i) prolonged life or reduced
maintenance requirements of infrastructure, (ii) im-
proved service delivery (less disrupted emptying
services), and (iii) improved system performance

Urban sanitation systems use a wide range of infrastructure,
technologies, and service arrangements. Homogeneous systems
using centralized sewerage and treatment are concentrated in
HICs. Cities in LMICs are characterized by complex and
(partially) decentralized and fragmented systems dominated by
(nonsewered) fecal sludge management (FSM).28−30 These
typically rely on onsite containment with manual or

mechanical emptying and road-based conveyance of fecal
sludge (FS) to a treatment facility. Most of these systems are
designed to allow infiltration of the supernatant into the
ground (soil-based treatment). However, in dense urban
settlements, these systems are frequently poorly designed and
constructed, resulting in inadequate supernatant treatment.31

Nonsewered systems account for most sanitation users globally
and most urban dwellers in Central and Southern Asia,
Oceania, and sub-Saharan Africa.2

Review Question and Objectives. The review question
was “What is the evidence for the impacts of climate change on
urban sanitation systems?” The objectives were to (1) identify
studies that assess or report on the impacts of CC on urban
sanitation systems and rate the strength of this evidence; (2)
analyze how the current understanding of the impacts of CC
on urban sanitation systems relates to the knowledge about
modes of urban sanitation failures;26 (3) identify gaps in the
evidence of climate-related impacts in the context of complex
urban sanitation systems. The review was registered on
PROSPERO (CRD42021237370). Methods and findings are
reported following the preferred reporting items for systematic
reviews and meta-analysis (PRISMA).32

■ MATERIALS AND METHODS

Literature Review. We conducted a systematic search in
compliance with PRISMA guidelines32 to identify original
qualitative or quantitative research on the impacts of CC on
urban sanitation systems.
The review populations were systems or their components

typically part of urban sanitation provision, including infra-
structure or services. We excluded systems that only operate on
a stand-alone basis or at household scale (often associated with
rural areas). We also excluded urban drainage systems that are
exclusively used for stormwater.

Table 1. Electronic Database Search Strategya

aThis table presents the search strategy used to search the Web of Science database. The proximity operators have been adapted in compliance with
the conventions of the respective database.
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Outcomes of interest were categorized as potential and
actual direct CC-related impacts on urban sanitation systems
that affect the delivery of safely managed sanitation as defined
in the introductory section.
The review was restricted to studies in English (original or

translated) with no limits to the publishing date of the
included literature. The authors included evidence published in
peer-reviewed journal articles, published conference proceed-
ings, and gray literature.
Table S1 provides a comprehensive list of inclusion and

exclusion criteria.
Peer-reviewed literature was searched for a combination of

three main concepts: climate change, sanitation systems, and
impacts. As part of the sanitation system, we included road-
based transport networks, arguing that they are as crucial to
FSM as functional sewers are to wastewater conveyance. The
search strategy for this review reflected this argument by
including keywords for road-based transport networks as part
of the sanitation systems. We included studies that made no
explicit connection to CC but presented evidence on impacts
on sanitation systems related to hazards (e.g., flooding, saline
intrusion) that are likely to be exacerbated by CC. However,
we excluded studies referring to the impact of “normal”
weather variations (e.g., seasonal or daily variations) on
sanitation systems. The search was conducted in February
2021 using electronic databases Scopus, Web of Science,
Transport Database (OvidSP interface), and Global Health
(OvidSP interface). Table 1 shows the search strategy for the
database search.
Search terms used for the gray literature search (Table S2)

were tailored to the specific requirements and search
capabilities of the included websites and databases. The results
were supplemented by hand-searching the reference lists of
selected studies and recent reviews. Experts in the field
recommended additional literature that may have been missing
from the results.
The systematic review of the literature involved the

following stages:

Stage I: search of electronic databases and gray
literature; results imported into reference management
software (Endnote X9) and subsequently into the
Rayyan QCRI web tool; removal of duplicates.
Stage II: screening of all database-retrieved titles by one
author (L.H.-S.), with a second author (Z.Z.)
independently screening 50% of the titles for quality
control; discussion and resolving of disagreements with a
third author (B.E.); abstract and subsequently full-text
screening (including gray literature) conducted inde-
pendently by two authors (L.H.-S. and Z.Z.) using the
inclusion and exclusion criteria; discussion and resolving
of disagreements with a third author (B.E.); selection of
papers; hand-searching of references of excluded review
papers and selected studies.
Stage III: final paper selection; data extraction by one
author (L.H.-S.) with a second author (Z.Z.) assessing
the accuracy of the extracted data for a subsample of
10% of the studies

L.H.-S. extracted and tabulated data from the selected
studies by CC effect (or hazard) studied, the urban sanitation
system (or component/process) covered, the method to study
the impacts, and the quality of evidence (Tables S5−S7).
Finally, we analyzed and mapped the selected papers according

to the sanitation failure mode26 and the sanitation climate
effect and hazard categories adapted from WHO (2019).25

Failure Mode Analysis. The authors draw on a system-
atical analysis of urban sanitation failure modes (FM)26 to
classify five urban sanitation FMs that result in human excreta
being not safely managed and potentially causing public and
environmental health risks: FM1, fecal sludge (FS) not
contained and not emptied; FM2, FS and/or supernatant
(SN) not delivered to treatment; FM3, FS and/or SN not
treated; FM4, wastewater (WW) not delivered to treatment;
FM5, WW not treated.26

For each study, we assessed the evidence that specific CC
impacts acting on specific systems or components of systems
increase or reduce the probability of each failure mode
occurring.

Quality of the Evidence Assessment. To evaluate the
quality of the evidence, we used two appraisal categories: (i)
relevance and generalizability of the presented evidence and
(ii) general quality of reporting. We based the scoring of the
first criteria on the following three subcategories:

Levels of evidence. On the basis of the study design,
results were classified as empirical evidence, modeled or
reported evidence, and expert consultation and each
classification was ranked. Empirical evidence was given
the highest score, followed by modeled and reported
evidence (same scoring). Results of expert consultation
received the lowest scoring. This ranking broadly follows
the convention used in medical research33,34 and reflects
the stronger representation of modeled evidence in
engineering.
Scale and generalizability of reported impacts. We
scored the scale and generalizability of reported impacts
in three categories (in descending order for scoring):
studies with global scale or case-independent approach,
context-specific studies (in terms of climate impacts and
sanitation systems) that are transferable to similar
contexts, and very context-specific studies with limited
generalizability.
Temporal scale. Studies describing impacts based on
(likely) long-term climate trends or multiple occurrences
of extreme events were scored of higher validity than
studies presenting evidence based on observations
during a single extreme event.

We adapted the quality appraisal framework developed by
Venkataramanan et al.35 to evaluate the quality of reporting of
both qualitative and quantitative papers. We modified their
framework to reflect the nature of the included studies and the
scope of this review (Table S3). In total, we used 10 criteria to
score the included studies, each with a maximum score of 1.
We evaluated papers with an aggregated score of 75% or above
as “strong”. One author (L.H.-S.) scored all documents, and a
second author (Z.Z.) independently scored a sample of 10%
for quality control.
Table S4 presents details for the relevance and quality

scoring of the included studies.

■ RESULTS AND DISCUSSION
Screening and Selection. The systematic search of

databases retrieved 59 063 articles. Eighty-five records were
identified through gray literature search (n = 32) and hand-
searching reference lists of included articles and excluded
review papers (n = 53). Expert consultation yielded no
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additional studies. A total of 15 936 duplicates were removed.

Most of the remaining articles (42 971) did not relate to urban

sanitation, CC impacts on sanitation systems, or analyzed

indirect impacts of CC on sanitation (e.g., spread of diseases)

or downstream effects. Eighteen papers identified through title

and abstract screening could not be accessed for full-text

review. A further 124 papers were excluded after content
review. The main reasons for exclusion are listed in Figure 1.

Characteristics of the Literature. Knowledge Clusters.
We found that the evidence for impacts of CC on urban
sanitation systems is contained in three separate clusters of
work. First, there are sanitation studies coming primarily from
the engineering literature and tending to focus on well-

Figure 1. Flow diagram summarizing the screening and selection process.

Table 2. Characteristics of the Included Literature

characteristics (n = 99) no. of documents

Literature Type
journal-published study 69
conference paper 21
gray literature 9

Type of Evidence
empirical 25
modeled 47
reported 26
expert consultation 1

Knowledge Cluster
sanitation sector studies 59

primarily engineering 50
sanitation and development 9

transport sector studies (road-based transport) 40
Sanitation System Category

sewered sanitation 46
nonsewered sanitation (including road-based transport systems) 48
mixed (nonsewered and sewered sanitation) 5

Study Country Classification by Incomea,b

low-income economies 1
lower middle-income economies 13
upper middle-income economies 7
high-income economies 80
global 1
aAccording to the World Bank country and lending groups classification for the 2022 fiscal year (ref 36). bThe sum of studies classified by income
country classification is greater than 99 because some studies covered multiple countries.
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established technologies (mostly sewered systems and studies
from HICs). The second cluster of studies are also from the
sanitation sector but come from literature more closely
embedded in international development, often interdiscipli-
nary, but rarely based in the pure engineering literature and
tend to focus on public health more broadly. It is impossible to
differentiate these along purely technological lines because the
first cluster also includes some nonsewered systems (e.g., septic
systems in HIC contexts). Thus, we describe the first group as
“primarily engineering” studies (n = 50), and the second as
“sanitation and development” (n = 9). Finally, there are studies
from the (road-based) transport sector (n = 40) (Table 2).
Sanitation System Categories. Of the 59 sanitation sector

studies, over three-quarters (n = 46) reported CC impacts on
sewered systems. Half of those studies (n = 23) presented
evidence for the impacts of CC on wastewater conveyance, 15
studies presented evidence on wastewater treatment, and eight
studies covered CC impacts affecting aspects of both treatment
and conveyance (wastewater management). All sewer studies
relate to conventional (combined or separate) sewerage. We
found no study presenting evidence for CC impacts on
modified sewer systems.
We found evidence of CC impacts relevant for nonsewered

sanitation systems in studies from the transport sector (n = 40)
and the sanitation sector knowledge cluster (n = 8). Four of
the latter reported on impacts on household latrines, and four
reported on septic tank systems37−40 presenting data from a
HIC context.
Five studies reported on mixed sanitation systems. Four of

these41−44 referred to mixed systems in specific communities,
and one study presented a global assessment of CC effects on
various sanitation technologies.11

None of the included studies explicitly explored the impacts
of CC on the transport of FS. The focus of the road-based
transport systems was divided between studies investigating
the impacts of CC on infrastructure (n = 23) and the
performance of the transport network (n = 16). One study
covered both aspects. Details of all included studies are
provided in Tables S5−S7.
Type of Evidence. Around a quarter (n = 25) of the studies

presented empirical evidence. Forty-seven studies presented
modeled data, and 26 presented reported evidence (i.e., results
from surveys, interviews or data extracted from operational
records). One study showed the results of a structured expert
consultation. The highest proportion of modeled data was
observed among the wastewater conveyance studies, with 18
out of 23 studies using a model-based approach. Modeling was
also common in the transport sector studies (24 out of 40
studies) (Figure 2). Within the “sanitation and development”
knowledge cluster, only one study presented empirical
evidence.

Climate Change Effects. The most common CC effect was
changing precipitation intensity or frequency, including pluvial
flooding (n = 41). Ten of those studies also included another
climate effect such as a change in temperature (n = 6), sea-level
rise (SLR) (n = 2), rising groundwater levels (n = 1), or
extreme weather (n = 1). Twenty-six studies presented
evidence on extreme weather (such as storms, heat waves, or
extreme rainfall events). Eight studies addressed the impact of
SLR, and two studies presented results for both extreme
weather (including storm surge) and SLR. Seven studies
described the impacts of temperature changes and variations,
and four investigated drought impacts. Five studies related to
various climate effects, and another five investigated the
impacts and interrelation of a specific combination of climate
effects.

Coverage. We found an over-representation from studies
presenting data from HICs: over half of the studies (n = 55)
were from just three countries: the United States (n = 39),
Canada (n = 9), and the United Kingdom (n = 8). Eighty-six of
the studies assessed impacts on systems in upper-middle and
high-income countries. One study had a global focus, and the
remaining 12 studies covered evidence from LMICs (or
multiple countries in this category). A graphic illustration of
the regional distribution of the studies is shown in Figure S1.

Relevance of Evidence and Quality of Reporting.
According to our scoring criteria, 86 of the included studies
reached at least 50% aggregated score (Table S5). Forty scored
75% or higher of the total maximum score (strong studies).
Most of the “strong” studies were either in the transport sector
or “primarily engineering” sanitation sector cluster and
published in journal articles; however, there was no strong
trend in terms of quality of evidence along the sanitation chain.
Almost half (12 out of 26) of the studies presenting evidence
on extreme weather events were published in conference
papers, with often lower reporting quality scoring when
compared to published journal papers.

Impacts along the Sanitation Service Chain. This
section describes the impacts of CC on sanitation systems as
presented in the included studies along the sanitation service
chain.

Impacts on the Use of Sanitation Systems and Contain-
ment. Most studies reporting CC impacts on access to and use
of toilets themselves relate to nonsewered sanitation systems
and the impact of flooding and extreme rainfall events. Four
studies report structural damage to pits or the superstructure
and overflowing of toilets.11,45−47 Few specify whether the
damage or contamination occurred due to surface or
groundwater flooding. None of these studies specified the
extent to which inadequate maintenance contributed to the
extent of the failure or collapse. Rising groundwater tables (due
to increased rainfall or SLR) were connected to increased
pollutant mobility within the soil-based treatment area of

Figure 2. Distribution of study populations and evidence type among included studies. The modeling approach varied in the different studies and
included sewer and transport flow modeling, downscaled global circulation models, stochastic modeling or projections based on δ-change methods,
etc. More details on the applied modeling approaches are provided in Tables S5−S7.
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septic tank systems, and one study linked this to increased
nitrogen contamination of groundwater and surface water
bodies.39 In informal settlements in the Philippines, flooding
was also responsible for the malfunctioning of water-based
toilets due to electricity failure resulting in a lack of water
supply.43

Inundation and inaccessibility of sanitation systems led to
(temporary) changes in sanitation behaviors. Coping mecha-
nisms included switching to a different type of sanitation,
which included unsafe sanitation behaviors.41,43,45−48 In
Bangladesh, people reverted to open defecation,41,48 and in
informal areas in Antananarivo, the use of “flying toilets”
(defecating into a plastic bag) increased.47 Drought also
triggered coping mechanisms. In Botswana, people stopped
using flush toilets connected to a sewer system due to water
restrictions and shortages during drought events. Common
alternatives were pit latrines. Leachate from those pit latrines
was suggested as a likely source of groundwater pollution.44

However, the study could not completely rule out alternative
sources for the detected NO3 and pathogens contamination.
Other negative impacts of extended dry periods on

containment systems included structural damage to toilets
caused by erosion in low-moisture soils11 and decreasing levels
of hydroelectric productivity resulting in failure of groundwater
pumps that provided water for pour-flush toilets in low-income
settlements in Accra, Ghana.42 However, due to the complexity
of the underlying reasons for electricity failures in Ghana, the
evidence could not unambiguously be linked to reduced
hydropower production. As a positive impact of declining
rainfall, declining groundwater levels might reduce ground-
water pollution risk from onsite containment systems,11 albeit
none of the identified studies presented empirical evidence for
this link.
Impacts on Emptying and Conveyance. Only one study

suggests a potential direct impact of climate effects on toilet
emptying practices. On the basis of experiences during the
rainy season in Dar-es-Salaam presented by Chaggu et al.,49 the
Vision 2030 research proposes the “risks from flooding may be
exacerbated by owners using floodwater to flush out the latrine
pits” (ref 11, p 18). While this statement appears to be a valid
assumption, the original study49 does not refer to CC impacts
on this or other sanitation practices.
CC impacts on road-based transport systems can be divided

into long- and short-term impacts of the integrity of road
pavement (n = 20),50−69 or other structural elements of the
network (e.g., bridges) (n = 3),70−72 and disruption of
transport network performance or capacity, such as inacces-
sible roads, increased congestion, and travel time (n =
16).73−89 Alteration of transport network performance was
commonly measured with indicators such as changes to
network accessibility, the ratio of accessible network length,
vehicle hours traveled, vehicle miles traveled, trips completed,
and loss in connectivity. Most studies reporting on physical
infrastructure implications associated with CC effects pre-
sented evidence for temperature changes or flooding impacts
for road pavements. Disruption of transport network perform-
ance was mainly attributed to intense rainfall or flooding
caused by extreme weather or SLR. However, several studies
qualified the predicted impact of CC on the pavement
infrastructure as relatively small compared to other factors
such as seasonal weather variability or increase in future
traffic.58−60

The bulk of sewerage studies examine the relationship
between changes in the frequency and intensity of precipitation
events and the efficacy of the sewer conveyance system in
terms of duration, frequency or spill volumes of combined
sewer overflows (CSOs),11,90−106 or increased risk of urban
flooding due to backflow of sewage, overflowing inspection
chambers, or flooding of basements.93−95,99,101,102,107−109

Some studies also linked the increased volume or frequency
of CSOs to higher pollutant concentrations in receiving water
bodies.93,98,100,103 The scale of these impacts could be plausibly
linked to the preflood condition of the sewer system, which in
turn is linked to the level of ongoing maintenance.
Reported impacts of flooding or high-intensity rainfall events

on sewer infrastructure were damages to sewer pumps and
mains,11,110−112 including increased risk of pipe failure due to
changed soil moisture and associated subsidence,102 and sewer
blockages after flooding events caused by sand, debris, or solid
waste entering the system.41,113 For storm events, it was
reported that extreme winds caused the uprooting of trees,
which damaged sewer pipes, as did the replacement of
electricity poles and the deployment of heavy equipment
during the cleanup following extreme weather events.114

In this context, it is important to recognize that extreme
weather events have immediate and delayed impacts on
sanitation systems. Most studies focused on the immediate
impacts during and after extreme rainfall or storm events,
butas the examples above illustratesome scholars also
demonstrate delayed or long-term implications of extreme
weather events.
Sewer system service disruptions caused by flooding and

storm events were caused by sewer pump failures resulting
from electricity outages.110 Several studies presented evidence
of the reduced capacity of sewer systems caused by increased
inflow and infiltration due to intense rainfall/flood-
ing102,113,115,116 or associated with SLR.116−119

However, various studies showed that the effects of
urbanization might have similar impacts on sewer systems as
changes in precipitation patterns and will exacerbate the
impacts of CC.98,99,106,109,115 Inadequate maintenance leading
to poor condition of many sewer systems reduces their
resilience during extreme weather events and aggravates the
damage caused by those events.111,120 The potential increase of
inflow and infiltration into separate sewer systems from SLR
will depend on the system’s technical status.117

SLR was also associated with higher groundwater tables and
thus risk of pollution from leaking pipes118 and corrosion of
pipes through saltwater infiltration.102 In coastal areas, the
combination of SLR, storm surge, extreme tides, and rainfall
events can compromise combined sewer discharge facilities if
the hydraulic head of wet weather flow is insufficient to force
water through backflow prevention devices leading to sewer
backup and potential flooding at low points of the sewer
network.11,102,121

During drought events, reduced flow rates and higher
concentrations of wastewater associated with water conserva-
tion were found to cause buildup of solids and subsequently
blockages in sewer and discharge pipes11,122−124 and
contribute to increased sewer corrosion and odors due to the
generation of acids and odorous gases.102,123 Due to changing
moisture content, soil movements increased the risk of pipe
and joint breakages, particularly in soils with high clay
content.11 All of these effects would be exacerbated in poorly
maintained systems. Some studies also reported the positive
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impacts of drier weather on the efficacy of sewer conveyance
systems, such as the reduced risk of overflowing inspection
chambers104,108 and decreased CSO spill frequency and
volume.92,96,104 Potentially limiting the benefits of the latter,
CSO spills within or after periods of drier weather were found
to cause higher pollutant concentrations due to lower water
levels and thus reduced dilution in receiving water bodies.103

By contrast, lower groundwater levels are thought to reduce
the risk for groundwater contamination from pathogens.11

An important observation for cities with complex sanitation
systems comprising sewer networks and FSM systems was that
damage to111,112,114,120 or overload of76 sewer systems could
disrupt road infrastructure or road-based transport network
performance. Various authors described damages to sewer
pipes that led to soil destabilization and ultimately partial road
collapse (e.g., the occurrence of sinkholes).111,112,114,120

However, none of the studies established the logical
continuation of this impact chain; in cities (partially) relying
on nonsewered sanitation, this could ultimately lead to a
breakdown of fecal sludge collection. This lack of coordinated
consideration of climate impacts mirrors the lack of integrated
management and operation of sanitation systems reported by
Peal et al.125 and others.
Impacts on Wastewater and FS Treatment. Almost all the

studies that report CC impacts on treatment systems relate to
wastewater treatment facilities. Four studies presented
evidence on the impacts of various climatic factors on septic
tank systems.37−40 Noticeably, there is inconsistency in
nomenclature to describe these systems. In older studies40

and studies from the “sanitation and development” cluster
(e.g., refs 11 and 47), “septic tank” or “septic tank systems” is
used. In contrast, more recent studies37−39 use the term “onsite
wastewater treatment systems” to describe systems consisting
of “a septic tank, drainfield and the native soils” (ref 39, p
1874). Since those systems also act as containment, we
presented part of the evidence in the section above. Moderate
increases in soil temperature were associated with increased
contaminant removal capacity in septic tank systems.37,38,40

Almost all studies referring to potential impacts of CC on FS
treatment present evidence for impacts on soil-based treatment
in septic tank systems in high-income low-density con-
texts.37−40 In dense urban settings, stand-alone septic tanks
are rarely a suitable sanitation solution at scale because soil-
based treatment of the liquid fraction is not viable due to space
constraints and limits of the soil treatment capacity.126

Research has shown that in cities, where large parts of the
population rely on septic tanks, operation and maintenance,
including regularly emptying and further sludge treatment, is
often inadequate.127 Septic tank systems are frequently poorly
constructed, with the liquid supernatant usually ending up in
the drainage network,31 potentially giving rise to blockages and
further flooding.26,127,128

Wastewater treatment plants (WWTPs) are frequently
located in low-lying zones and are vulnerable to flooding
during intense rainfall and extreme weather events. In coastal
cities, WWTPs are also exposed to flood risk due to SLR and
storm surges during extreme weather events (e.g., hurricanes
and cyclones). Various studies presented evidence for flood
waters causing damage to WWTP infrastructure and equip-
ment.11,90,110−113,129 Inundation with seawater was found to be
more damaging to equipment113,118 than freshwater inunda-
tion. Corrosion of treatment equipment was also reported due
to drought, causing more concentrated and corrosive influent

to WWTPs.123 Water scarcity has previously been proposed as
a plausible constraint on the implementation or sustained
operation of sewerage,130 but there was limited empirical
evidence to support this. A study assessing the impacts of low
flow due to droughts and related water conservation measures
concluded that excess depositions and siltation from up to 20%
reduced flow rates was negligible for most parts of the WWTP
and might only be of concern in velocity-controlled grit
chambers.131 Experience from earthquake-induced land
subsidence in Japan suggested that SLR-induced rising
groundwater levels might generate buoyant forces in areas
not designed for high groundwaters and thus damage buried
infrastructure such as pipes.118

Evidence for service disruptions of wastewater treatment
plants mainly referred to (temporary) system failures due to
flooding of facilities93,111,112,114,129 or overloading of sewers
resulting in bypassing treatment.111,129 The importance of
interdependent urban infrastructure was demonstrated by
studies reporting that during flood events road interruptions
and closures led to disruption in staff and supply access to
WWTPs110−113,129 and electricity outages caused failures of
pumps and pond aeration;113,129 SLR in combination with high
tides was predicted to limit the ability to discharge treated
wastewater into water bodies by gravity and cause backflow
into the system.121,123

CC-related impacts on the efficacy of treatment systems
included extreme rainfall events during which increased
pollutant loads of the influent can exceed the biological
treatment capacities of the WWTP122,132,133 and reduce
retention times133 leading to reduced nutrient removal. Lack
of maintenance may result in separate sewer systems
experiencing increased inflow and infiltration during rainfall
events and de facto behaving like combined sewer systems. A
study from Zimbabwe demonstrated that the treatment efficacy
of WWTP connected to such a structurally unsound separate
sewer system declined during intense rainfall events as the
inflow rates and loads exceeded the design parameters of the
treatment plant.133 SLR was found to cause higher inflow and
infiltration, stretching the design capacity of WWTPs.116,119

However, high-intensity rainfall events were also associated
with more diluted inflow into WWTPs, positively affecting
effluent quality.115,132

Due to more concentrated wastewater inflow, declining
rainfall and prolonged dry periods were associated with
reduced discharge quality.123,131,134,135 For seawater-induced
flooding events, inundation of WWTP with saltwater was
linked to a negative impact on biological treatment
processes.113

Temperature variations can positively or negatively impact
the efficacy of treatment processes. Several studies linked
moderate temperature increases to improved removal
efficiencies in WWTPs134,136 and FS treatment systems.38,40

However, more extreme temperature shocks were found to
reduce biological treatment efficiency.137 Two studies inves-
tigated the effects of winter temperature variations leading to
snowmelt and thus a sharp decrease of wastewater influent
temperature, which reduced treatment efficiency.138,139 Over-
loading or bypassing treatment plants was found to
contaminate receiving water bodies.93,122,129,140 In terms of
environmental risk, treatment efficacy is interlinked with the
dilution capacity of receiving water bodies, which is expected
to decrease for drier weather.11
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Table 3. Mapping of Evidence of Climate Change Impacts on Urban Sanitation System along the Sanitation Failure Mode
Classification (n = 99)
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Overall, the literature provides evidence of multiple impacts
of CC on sewer conveyance and wastewater treatment. The
evidence for impacts on nonsewered sanitation is more limited,
with few studies providing examples of the failure of pits and
tanks and users reverting to unsafe sanitation practices
primarily during flood events. While never making this explicit,
the studies which look at sewerage, road networks, and
treatment plants often imply the interconnected nature of the
urban system and the potential for prolonged multiple failures
in cities relying on both sewered and nonsewered sanitation
under extreme weather conditions.
Failure Mode Analysis. To explore the literature land-

scape in more detail, we linked evidence about CC impacts to

existing knowledge of the modes in which urban sanitation
systems fail to provide safe sanitation.26

Table 3 shows that available evidence on how CC will likely
increase or reduce the probability of typical modes of
sanitation failure concentrates on the management and
treatment of wastewater in sewered sanitation systems (failure
modes 4 and 5) and climate impacts on road-based transport
systems. When excluding the 40 studies from the transport
sector cluster, only 11 studies presented evidence relevant to
the FSM failure modes (FM 1−3). Almost all of those studies
discussed the impacts of CC on onsite sanitation containment,
with only three studies referring to damaged road networks.
However, no studies explicitly investigated how climate effects

Table 3. continued
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impact FS conveyance services. As mentioned earlier, only one
study presented evidence for the potential impacts of CC on
FS emptying (part of FM2). There is scant evidence for the
impacts of CC on fecal sludge treatment (FM3). In general,
the tabulation reveals a clear dominance of evidence referring
to impacts of CC on sanitation infrastructure, whereas there
are few studies that present evidence for the implications of
CC on urban sanitation service provision and management.
In Table S8, we present a version of the failure mode matrix

including only evidence from “strong” studies (n = 40). Table
4 shows a comparison of the number of individual studies and

impact categories for each failure mode category before and
after quality and relevance scoring. Before scoring, over 40%
(33 out of 76) of the impact categories (cells of the failure
mode table) rely on single-source evidence. After quality
scoring, this proportion increases to over 50% (29 out of 55)
of the studies. Eleven out of those 29 impact categories relying
on single-source evidence are based solely on the Vision 2030
research,11 which derived its original evidence solely from
expert judgment.
The tabulation also highlights the uneven distribution of

studies between the failure mode categories. After scoring, the
total number of impact categories for which evidence was
available in at least one of the included studies is reduced from
76 to 55. We observed the highest postquality scoring
reduction of evidence-based impact categories (from 23 to
13) and relevant individual studies (from 26 to 14) in the FM5
category. Noticeably, there was no reduction of impact
categories under the FM1 category, but postscoring 11 out
of 15 impact categories in this cluster rely on single source-
based evidence.
Drivers of Poor-Quality Evidence. We found that the

evidence for CC impacts on urban sanitation systems is weak.
Many proposed impacts are demonstrated from a single source
based only on expert judgment.11 Despite screening over 43
000 search results and including keywords beyond explicit
reference to CC, we only found 59 studies that explicitly
presented evidence for potential and actual direct impacts of a
changing climate on the management of human excreta in
urban areas. The available evidence concentrates on sewerage
and wastewater treatment systems and experiences from high-
and upper-middle income countries. The majority of papers
used models to predict CC impacts on the sanitation system.
As models are always a simplified version of reality, such a

heavy reliance on model-based studies might limit under-
standing of more complex interactions of CC effects and their
impacts on sanitation systems. Unexpected CC impacts
notably cascading and interlinked impactswill not be
represented.122

A substantial proportion of the included studies (40 out of
99) presented evidence for CC impacts on road-based
transport systems. Our review found that, so far, the evidence
from the transport sector is not adequately accessed,
transferred, and expanded from and into the sanitation sector.

Overarching Themes. The review identified several
overarching themes which we discuss below, including a lack
of consideration of urban FSM, lack of recognition of
interdependencies between infrastructure and service systems,
complexity of CC effects, interdependence with other urban
sectors, and limitations of autonomous household adaptation.

Lack of Consideration of Urban Fecal Sludge Manage-
ment. The post-2015 update of the WHO’s Vision 2030
acknowledges the potential vulnerability of FSM to CC and the
disruption that flooded roads might cause for emptying
vehicles4 but does not provide original evidence to support
this concern. We found only sparse evidence on the impacts of
CC on urban FSM in the reviewed studies. Only one study11

mentioned the potential impacts of CC on FS emptying
practices. While sufficient evidence from the transport sector
generally describes how road-based transport systems could be
impacted by CC-induced infrastructure damage or network
performance and capacity disruptions, no study explicitly
identifies the implications for FS emptying and transport
services. There are also no studies exploring FSM service
chains by linking fecal sludge emptying and transport
disruptions to impacts on FS treatment systems.

Lack of Recognition of Interdependencies of Urban
Sanitation Infrastructure and Service Systems. Our review
found that the evidence for the impacts of CC on urban
sanitation systems is contained in separate clusters of work that
are poorly connected. Most studies on urban sewerage
presented evidence from HIC contexts where homogeneous
urban sanitation systems dominate.29 Most studies presenting
evidence from cities in LMICs with complex and fragmented
sanitation systems used relatively homogeneous areas (in most
cases low-income settlements) as case studies to describe the
impacts on their respective sanitation systems (mainly
nonsewered sanitation). None of the reviewed studies
investigated the impacts of CC on a citywide complex
sanitation system featuring a mixture of centralized sewerage
and nonsewered decentralized sanitation systems. This
conscious or unconscious “insulation” of sanitation infra-
structure and services systems does not reflect the reality of
sanitation systems in many cities globally;29 there is limited
acknowledgment of the interconnectivity of different sanitation
infrastructure and service systems within one city.141 This
suggests a lack of systems thinking in the sanitation sector and
a prevailing focus on technologies rather than service
approaches.142

Complexity of Climate Change Effects. CC impacts on
urban sanitation systems are complex, and combinations of
climate effects need to be considered. While most studies
looked at a single CC impact, a few studies demonstrated the
importance of acknowledging the complex interaction of CC
impacts. Langeveld et al.122 showed that the impacts of an
extreme rainfall event were exacerbated by a preceding
prolonged dry period. A combination of extended dry periods

Table 4. Comparison of the Number of Studies and Impact
Categories per Failure Mode Category before and after
Quality Scoring

FM1 FM2 FM3 FM4 FM5 total

All Studies Included (see Table 3) (n = 99)
no. of individual studies 10 44 4 35 26 99
no. of impact categories 15 16 2 20 23 76
no. of impact categories relying
on evidence from a
single source

9 7 1 7 9 33

Only Studies Scoring 75% or Higher in Aggregated Relevance of
Evidence and Quality of Reporting Score (see Table S5) (n = 40)

no. of individual studies 6 27 3 21 14 40
no. of impact categories 15 12 1 14 13 55
no. of impact categories relying
on evidence from a
single source

11 4 0 5 9 29
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and more intense rainfalls have been predicted for various
geographic regions.143

Further variations in the predicted changes and extremes
might be more critical than average changes. Multiple studies
demonstrated that, despite minor changes in total annual
rainfall volumes, the increase in shorter and more intense
rainfall events would substantially impact the performance of
current sanitation systems, which require major investments to
adapt to these changes.92,105,106 Analogously, variations in
average temperature and long-term temperature changes have
moderate effects on system performances such as wastewater
treatment processes or the condition of pavement structures.
By contrast, in colder climates, rapid and large changes in
winter temperature have substantial impacts on treatment
processes138,139 and road pavement stability.54,58,69

Interdependencies with Other Urban Sectors. Urban
sanitation systems have interdependencies with other urban
sectors and services.141 Our review acknowledged the
importance of road-based transport systems as intrinsic
components of FSM services and revealed evidence for the
knock-on effects of electricity outages.42,43,110,113,129 Partic-
ularly in areas where increases in the frequency and intensity of
heavy rainfall events are predicted, efficient urban drainage and
solid waste management systems are crucial for the functioning
of urban sanitation systems.141,144 While there is a growing
body of literature in the urban disaster risk sphere exploring
cascading effects of disaster and interdependencies of critical
infrastructure (e.g., ref 145), the interdependencies of poorly
functioning sanitation systems with other urban infrastructure
and services in the context of CC are not adequately
researched. Neither is there evidence to help policymakers
prioritize management strategies to reduce these cascading
interconnections.
Limitations of Autonomous Household Adaptation. On

the basis of the rationale that globally (and particularly in
LMICs), sanitation relies heavily on household management
and that even poor households can adapt (onsite) toilet
designs and thus cope with climatic impacts threatening the
functioning of their sanitation systems, the Vision 2030
research11,12 concludes that the resilience of sanitation systems
is more driven by technology than management. Evidence
included in this review contradicts this hypothesis. Postflood-
ing, people reverted to open defecation41 or flying toilets.47 In
Botswana, drought-induced sanitation behavior change poten-
tially led to a loss of efficacy of sanitation systems to protect
environmental and public health.44 Another study found no
long-term adaptation of water supply or sanitation systems:
“People just try to pass the days of flood anyhow and do the
same every year; they do not do anything that will support
them during the next flood” (ref 48, p 311). In low-income
areas in Manila, the Philippines, Purwar et al.43 suggested that
increased frequency of floods will reduce the priority of
households to adapt to flood.
Limitations. We excluded downstream effects from the

scope of this review. However, this limited the inclusion of
papers showing cascading impacts of CC, such as the
combined effects of increasing CSO discharge, warmer water
temperatures, and lower water levels in receiving water bodies
resulting in an increased risk of waterborne disease.146 We
limited our search to publications in English only, which might
have under-represented research from non-Anglophone
countries. A considerable body of literature reports on the
effects of weather, mainly rainfall, on road-based transport

systems. A high-level review of those papers indicates that they
reinforce the presented results on the likely impacts of CC;
however, we excluded studies referring to the impact of
“normal” daily and seasonal weather variations (e.g., impacts of
rain on traffic flow). There is a risk of bias toward studies
explicitly stating negative impacts of a particular climate trend
while the positive outcomes of the reverse trend are not
reported.

Implications and Perspectives. This is the first system-
atic review to assess the evidence of CC impacts on all types of
urban sanitation systems, considering the existing knowledge
on urban sanitation failures, and integrating the available
evidence for CC impacts on urban road infrastructure and
network performance. In the road-based transport knowledge
cluster, we found a substantial body of literature that could
inform adaptation and resilience planning for urban FS
transport and decentralized sanitation systems. However, a
lack of intersectoral thinking means that sanitation scholars
and practitioners currently overlook this knowledge cluster.
Our review has highlighted that the research on urban

sanitation is skewed toward studies that assess the impacts of
CC on centralized, highly engineered, high-cost sanitation
options situated in high-income contexts. In addition, we
found that most evidence for CC impacts on sanitation
systems refers to infrastructure rather than operational
components. While lack of attention (and funding) for
operation and maintenance of sanitation and specifically
FSM systems is widely acknowledged in the sanitation
sector,147 the lack of evidence for the impacts of CC on the
operational side of FSM remains startling. The latest Joint
Monitoring Program data shows that globally nonsewered
sanitation infrastructure (septic tank systems and pit latrines)
in urban areas has been increasing at twice the rate of sewer
connections (ref 2, p 54). Research has shown that non- or
mismanagement of fecal sludge and supernatant (FM1−FM3)
contributes substantially to unsafe urban sanitation manage-
ment.26,31,127 The impacts of CC are likely to aggravate
existing challenges further.25 One possible explanation for this
FSM “blind spot” could be that nonsewered sanitation is still
considered “household managed”.11 However, the lack of
evidence for autonomous household adaptation capacity to the
impacts of CC on sanitation systems suggests that a planned
public service approach at city level is required to actively
manage and adapt sewered and nonsewered sanitation systems.
Particularly in fast-growing cities and towns in LMICs, this is
essential since sewer-based sanitation services are not keeping
pace with urbanization.2,142 In addition, an increasing number
of urban dwellers are projected to live in areas affected by
severe water stress where the expansion of water-based
conveyance systems will be limited by competing pressures
on limited water resources.130 Therefore, onsite containment
and effective FSM services will be necessary for the foreseeable
future.142

Lack of relevant data and evidence is limiting the ability of
countries to successfully submit applications for funding for
sanitation adaptation and resilience projects.20 In particular,
the multilateral climate funds, including the Green Climate
Fund, the Global Environment Facility, and the Adaptation
Fund, are focused on additionality and require applications to
provide clear evidence and metrics demonstrating how the
proposed projects and programs contribute to climate goals as
opposed to broader societal development.148 Incremental costs
of “hard”, infrastructure components are easier to identify and
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appraise in terms of their additionality, which is reflected in a
preference of “hard” over “soft” components, including
operational adjustments in sanitation adaptation and resilience
funding disbursements.20,148,149

We are concerned that the current focus of research related
to the impacts of CC not only contradicts the sector’s future
trends but will also influence the focus, quality, and robustness
of sanitation future adaptation and resilience measures.
Investments in infrastructure alone will not render a sanitation
system “resilient” toward the impacts of CC.150 Lack of
understanding and anticipation of the impacts of CC on
complex sanitation systems in contexts that are already less
well-resourced and have lower institutional adaptation
capacities is likely to reinforce existing sanitation inequalities
and vulnerabilities through climate adaptation projects and
investments.
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